Advertisement
Review article| Volume 22, ISSUE 6, P351-359, June 2016

Empirical therapy in Methicillin-resistant Staphylococcus Aureus infections: An Up-To-Date approach

Published:April 08, 2016DOI:https://doi.org/10.1016/j.jiac.2016.02.012

      Abstract

      Methicillin-resistant Staphylococcus aureus (MRSA) continues to be an important pathogen worldwide, with high prevalence of infection in both community and hospital settings. Timely and appropriate choice of empirical therapy in the setting of MRSA infection is imperative due to the high rate of associated morbidity and mortality with MRSA infections. Initial choices should be made based on the site and severity of the infection, most notably moderate skin and soft tissue infections which may be treated with oral antibiotics (trimethoprim-sulfamethoxazole, clindamycin, doxycycline/minocycline, linezolid) in the outpatient setting, versus choice of parenteral therapy in the inpatient setting of more invasive or severe disease. Though the current recommendations continue to strongly rely on vancomycin as a standard empiric choice in the setting of severe/invasive infections, alternative therapies exist with studies supporting their non-inferiority. This includes the use of linezolid in pneumonia and severe skin and skin structure infections (SSSI) and daptomycin for MRSA bacteremia, endocarditis, SSSIs and bone/joint infections. Additionally, concerns continue to arise in regards to vancomycin, such as increasing isolate MICs, and relatively high rates of clinical failures with vancomycin. Thus, the growing interest in vanomycin alternatives, such as ceftaroline, ceftobribole, dalbavancin, oritavancin, and tedizolid, and their potential role in treating MRSA infections.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Journal of Infection and Chemotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Boyce J.M.
        Methicillin-resistant staphylococcus aureus in hospitals and long-term care facilities: microbiology, epidemiology, and preventive measures.
        Infect Control Hosp Epidemiol. 1992; 13: 725-737
        • Chambers H.F.
        Methicillin-resistant staphylococci.
        Clin Microbiol Rev. 1988; 1: 173-186
        • Shorr A.F.
        Epidemiology of staphylococcal resistance.
        Clin Infect Dis. 2007; 45: S171-S176
        • Cosgrove S.E.
        • Qi Y.
        • Kaye K.S.
        • Harbarth S.
        • Karchmer A.W.
        • Carmeli Y.
        The impact of methicillin resistance in staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges.
        Infect Control Hosp Epidemiol. 2005; 26: 166-174
        • Sader H.S.
        • Streit J.M.
        • Fritsche T.R.
        • Jones R.N.
        Antimicrobial susceptibility of gram-positive bacteria isolated from european medical centres: results of the daptomycin surveillance programme (2002-2004).
        Clin Microbiol Infect. 2006; 12: 844-852
        • Klevens R.M.
        • Morrison M.A.
        • Nadle J.
        • et al.
        Invasive methicillin-resistant staphylococcus aureus infections in the united states.
        JAMA. 2007; 298: 1763-1771
        • Lowy F.D.
        Staphylococcus aureus infections.
        N Engl J Med. 1998; 339: 520-532
        • Barna J.C.
        • Williams D.H.
        The structure and mode of action of glycopeptide antibiotics of the vancomycin group.
        Annu Rev Microbiol. 1984; 38: 339-357
        • van Hal S.J.
        • Lodise T.P.
        • Paterson D.L.
        The clinical significance of vancomycin minimum inhibitory concentration in staphylococcus aureus infections: a systematic review and meta-analysis.
        Clin Infect Dis. 2012; 54: 755-771
        • Liu C.
        • Bayer A.
        • Cosgrove S.E.
        • et al.
        Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant staphylococcus aureus infections in adults and children: executive summary.
        Clin Infect Dis. 2011; 52: 285-292
        • Dhand A.
        • Sakoulas G.
        Reduced vancomycin susceptibility among clinical staphylococcus aureus isolates (‘the MIC creep’): implications for therapy.
        F1000 Med Rep. 2012; 4 (Epub 2012 Feb 1): 4
        • Rybak M.J.
        The pharmacokinetic and pharmacodynamic properties of vancomycin.
        Clin Infect Dis. 2006; 42: S35-S39
        • Rybak M.J.
        • Lomaestro B.M.
        • Rotschafer J.C.
        • et al.
        Vancomycin therapeutic guidelines: a summary of consensus recommendations from the infectious diseases society of america, the american society of health-system pharmacists, and the society of infectious diseases pharmacists.
        Clin Infect Dis. 2009; 49: 325-327
        • Moise-Broder P.A.
        • Forrest A.
        • Birmingham M.C.
        • Schentag J.J.
        Pharmacodynamics of vancomycin and other antimicrobials in patients with staphylococcus aureus lower respiratory tract infections.
        Clin Pharmacokinet. 2004; 43: 925-942
        • Holmes N.E.
        • Tong S.Y.
        • Davis J.S.
        • Hal S.J.
        Treatment of methicillin-resistant staphylococcus aureus: vancomycin and beyond.
        Semin Respir Crit Care Med. 2015; 36: 17-30
        • Neely M.N.
        • Youn G.
        • Jones B.
        • et al.
        Are vancomycin trough concentrations adequate for optimal dosing?.
        Antimicrob Agents Chemother. 2014; 58: 309-316
        • Mohr J.F.
        • Murray B.E.
        Point: vancomycin is not obsolete for the treatment of infection caused by methicillin-resistant staphylococcus aureus.
        Clin Infect Dis. 2007; 44: 1536-1542
        • Wang J.T.
        • Fang C.T.
        • Chen Y.C.
        • Chang S.C.
        Necessity of a loading dose when using vancomycin in critically ill patients.
        J Antimicrob Chemother. 2001; 47: 246
        • Levine D.P.
        Vancomycin: a history.
        Clin Infect Dis. 2006; 42: S5-S12
        • Tverdek F.P.
        • Crank C.W.
        • Segreti J.
        Antibiotic therapy of methicillin-resistant staphylococcus aureus in critical care.
        Crit Care Clin. 2008; 24: 249-260
        • Ruhe J.J.
        • Monson T.
        • Bradsher R.W.
        • Menon A.
        Use of long-acting tetracyclines for methicillin-resistant staphylococcus aureus infections: case series and review of the literature.
        Clin Infect Dis. 2005; 40: 1429-1434
        • Adra M.
        • Lawrence K.R.
        Trimethoprim/sulfamethoxazole for treatment of severe staphylococcus aureus infections.
        Ann Pharmacother. 2004; 38: 338-341
        • Szumowski J.D.
        • Cohen D.E.
        • Kanaya F.
        • Mayer K.H.
        Treatment and outcomes of infections by methicillin-resistant staphylococcus aureus at an ambulatory clinic.
        Antimicrob Agents Chemother. 2007; 51: 423-428
        • Markowitz N.
        • Quinn E.L.
        • Saravolatz L.D.
        Trimethoprim-sulfamethoxazole compared with vancomycin for the treatment of staphylococcus aureus infection.
        Ann Intern Med. 1992; 117: 390-398
        • Paul M.
        • Bishara J.
        • Yahav D.
        • et al.
        Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by meticillin resistant staphylococcus aureus: randomised controlled trial.
        BMJ. 2015; 350: h2219
        • Panzer J.D.
        • Brown D.C.
        • Epstein W.L.
        • Lipson R.L.
        • Mahaffey H.W.
        • Atkinson W.H.
        Clindamycin levels in various body tissues and fluids.
        J Clin Pharmacol New Drugs. 1972; 12: 259-262
        • Kaplan S.L.
        • Hulten K.G.
        • Gonzalez B.E.
        • et al.
        Three-year surveillance of community-acquired staphylococcus aureus infections in children.
        Clin Infect Dis. 2005; 40: 1785-1791
        • Frank A.L.
        • Marcinak J.F.
        • Mangat P.D.
        • et al.
        Clindamycin treatment of methicillin-resistant staphylococcus aureus infections in children.
        Pediatr Infect Dis J. 2002; 21: 530-534
        • Lewis 2nd, J.S.
        • Jorgensen J.H.
        Inducible clindamycin resistance in staphylococci: should clinicians and microbiologists be concerned?.
        Clin Infect Dis. 2005; 40: 280-285
        • Panagea S.
        • Perry J.D.
        • Gould F.K.
        Should clindamycin be used as treatment of patients with infections caused by erythromycin-resistant staphylococci?.
        J Antimicrob Chemother. 1999; 44: 581-582
        • Moellering R.C.
        Linezolid: the first oxazolidinone antimicrobial.
        Ann Intern Med. 2003; 138: 135-142
        • Stevens D.L.
        • Herr D.
        • Lampiris H.
        • Hunt J.L.
        • Batts D.H.
        • Hafkin B.
        Linezolid versus vancomycin for the treatment of methicillin-resistant staphylococcus aureus infections.
        Clin Infect Dis. 2002; 34: 1481-1490
        • Shorr A.F.
        • Kunkel M.J.
        • Kollef M.
        Linezolid versus vancomycin for staphylococcus aureus bacteraemia: pooled analysis of randomized studies.
        J Antimicrob Chemother. 2005; 56: 923-929
        • Beibei L.
        • Yun C.
        • Mengli C.
        • Nan B.
        • Xuhong Y.
        • Rui W.
        Linezolid versus vancomycin for the treatment of gram-positive bacterial infections: meta-analysis of randomised controlled trials.
        Int J Antimicrob Agents. 2010; 35: 3-12
        • Kalil A.C.
        • Klompas M.
        • Haynatzki G.
        • Rupp M.E.
        Treatment of hospital-acquired pneumonia with linezolid or vancomycin: a systematic review and meta-analysis.
        BMJ Open. 2013; 3 (e003912-2013-003912)
        • Wunderink R.G.
        • Niederman M.S.
        • Kollef M.H.
        • et al.
        Linezolid in methicillin-resistant staphylococcus aureus nosocomial pneumonia: a randomized, controlled study.
        Clin Infect Dis. 2012; 54: 621-629
        • Kuter D.J.
        • Tillotson G.S.
        Hematologic effects of antimicrobials: focus on the oxazolidinone linezolid.
        Pharmacotherapy. 2001; 21: 1010-1013
        • Lawrence K.R.
        • Adra M.
        • Gillman P.K.
        Serotonin toxicity associated with the use of linezolid: a review of postmarketing data.
        Clin Infect Dis. 2006; 42: 1578-1583
        • Steenbergen J.N.
        • Alder J.
        • Thorne G.M.
        • Tally F.P.
        Daptomycin: a lipopeptide antibiotic for the treatment of serious gram-positive infections.
        J Antimicrob Chemother. 2005; 55: 283-288
        • Humphries R.M.
        • Pollett S.
        • Sakoulas G.
        A current perspective on daptomycin for the clinical microbiologist.
        Clin Microbiol Rev. 2013; 26: 759-780
        • Boucher H.W.
        • Sakoulas G.
        Perspectives on daptomycin resistance, with emphasis on resistance in staphylococcus aureus.
        Clin Infect Dis. 2007; 45: 601-608
        • Fowler Jr., V.G.
        • Boucher H.W.
        • Corey G.R.
        • et al.
        Daptomycin versus standard therapy for bacteremia and endocarditis caused by staphylococcus aureus.
        N Engl J Med. 2006; 355: 653-665
        • Rehm S.J.
        • Boucher H.
        • Levine D.
        • et al.
        Daptomycin versus vancomycin plus gentamicin for treatment of bacteraemia and endocarditis due to staphylococcus aureus: subset analysis of patients infected with methicillin-resistant isolates.
        J Antimicrob Chemother. 2008; 62: 1413-1421
        • Kullar R.
        • Casapao A.M.
        • Davis S.L.
        • et al.
        A multicentre evaluation of the effectiveness and safety of high-dose daptomycin for the treatment of infective endocarditis.
        J Antimicrob Chemother. 2013; 68: 2921-2926
        • Segreti J.A.
        • Crank C.W.
        • Finney M.S.
        Daptomycin for the treatment of gram-positive bacteremia and infective endocarditis: a retrospective case series of 31 patients.
        Pharmacotherapy. 2006; 26: 347-352
        • Finney M.S.
        • Crank C.W.
        • Segreti J.
        Use of daptomycin to treat drug-resistant gram-positive bone and joint infections.
        Curr Med Res Opin. 2005; 21: 1923-1926
        • Lalani T.
        • Boucher H.W.
        • Cosgrove S.E.
        • et al.
        Outcomes with daptomycin versus standard therapy for osteoarticular infections associated with staphylococcus aureus bacteraemia.
        J Antimicrob Chemother. 2008; 61: 177-182
        • Silverman J.A.
        • Mortin L.I.
        • Vanpraagh A.D.
        • Li T.
        • Alder J.
        Inhibition of daptomycin by pulmonary surfactant: in vitro modeling and clinical impact.
        J Infect Dis. 2005; 191: 2149-2152
        • Moore C.L.
        • Osaki-Kiyan P.
        • Haque N.Z.
        • Perri M.B.
        • Donabedian S.
        • Zervos M.J.
        Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study.
        Clin Infect Dis. 2012; 54: 5-58
        • Murray K.P.
        • Zhao J.J.
        • Davis S.L.
        • et al.
        Early use of daptomycin versus vancomycin for methicillin-resistant staphylococcus aureus bacteremia with vancomycin minimum inhibitory concentration >1 mg/L: a matched cohort study.
        Clin Infect Dis. 2013; 56: 1562-1569
        • Sakoulas G.
        • Alder J.
        • Thauvin-Eliopoulos C.
        • Moellering Jr., R.C.
        • Eliopoulos G.M.
        Induction of daptomycin heterogeneous susceptibility in staphylococcus aureus by exposure to vancomycin.
        Antimicrob Agents Chemother. 2006; 50: 1581-1585
        • Patel J.B.
        • Jevitt L.A.
        • Hageman J.
        • McDonald L.C.
        • Tenover F.C.
        An association between reduced susceptibility to daptomycin and reduced susceptibility to vancomycin in staphylococcus aureus.
        Clin Infect Dis. 2006; 42: 1652-1653
        • Falcone M.
        • Russo A.
        • Venditti M.
        • Novelli A.
        • Pai M.P.
        Considerations for higher doses of daptomycin in critically ill patients with methicillin-resistant staphylococcus aureus bacteremia.
        Clin Infect Dis. 2013; 57: 1568-1576
        • Miller B.A.
        • Gray A.
        • Leblanc T.W.
        • Sexton D.J.
        • Martin A.R.
        • Slama T.G.
        Acute eosinophilic pneumonia secondary to daptomycin: a report of three cases.
        Clin Infect Dis. 2010; 50: e63-e68
        • Steed M.E.
        • Rybak M.J.
        Ceftaroline: a new cephalosporin with activity against resistant gram-positive pathogens.
        Pharmacotherapy. 2010; 30: 375-389
        • Pasquale T.R.
        • Tan M.J.
        • Trienski T.L.
        • File Jr., T.M.
        Methicillin-resistant staphylococcus aureus nosocomial pneumonia patients treated with ceftaroline: retrospective case series of 10 patients.
        J Chemother. 2015; 27: 29-34
        • Lin J.C.
        • Aung G.
        • Thomas A.
        • Jahng M.
        • Johns S.
        • Fierer J.
        The use of ceftaroline fosamil in methicillin-resistant staphylococcus aureus endocarditis and deep-seated MRSA infections: a retrospective case series of 10 patients.
        J Infect Chemother. 2013; 19: 42-49
        • Barber K.E.
        • Ireland C.E.
        • Bukavyn N.
        • Rybak M.J.
        Observation of “seesaw effect” with vancomycin, teicoplanin, daptomycin and ceftaroline in 150 unique MRSA strains.
        Infect Dis Ther. 2014; 3: 35-43
        • Dhand A.
        • Bayer A.S.
        • Pogliano J.
        • et al.
        Use of antistaphylococcal beta-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant staphylococcus aureus: role of enhanced daptomycin binding.
        Clin Infect Dis. 2011; 53: 158-163
        • Sakoulas G.
        • Moise P.A.
        • Casapao A.M.
        • et al.
        Antimicrobial salvage therapy for persistent staphylococcal bacteremia using daptomycin plus ceftaroline.
        Clin Ther. 2014; 36: 1317-1333
        • Zhanel G.G.
        • Lam A.
        • Schweizer F.
        • et al.
        Ceftobiprole: a review of a broad-spectrum and anti-MRSA cephalosporin.
        Am J Clin Dermatol. 2008; 9: 245-254
        • Noel G.J.
        • Bush K.
        • Bagchi P.
        • Ianus J.
        • Strauss R.S.
        A randomized, double-blind trial comparing ceftobiprole medocaril with vancomycin plus ceftazidime for the treatment of patients with complicated skin and skin-structure infections.
        Clin Infect Dis. 2008; 46: 647-655
        • Awad S.S.
        • Rodriguez A.H.
        • Chuang Y.C.
        • et al.
        A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia.
        Clin Infect Dis. 2014; 59: 51-61
        • Saravolatz L.D.
        • Stein G.E.
        • Johnson L.B.
        Telavancin: a novel lipoglycopeptide.
        Clin Infect Dis. 2009; 49: 1908-1914
        • Stryjewski M.E.
        • Graham D.R.
        • Wilson S.E.
        • et al.
        Telavancin versus vancomycin for the treatment of complicated skin and skin-structure infections caused by gram-positive organisms.
        Clin Infect Dis. 2008; 46: 1683-1693
        • Rubinstein E.
        • Lalani T.
        • Corey G.R.
        • et al.
        Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens.
        Clin Infect Dis. 2011; 52: 31-40
        • Nannini E.C.
        • Corey G.R.
        • Stryjewski M.E.
        Telavancin for the treatment of hospital-acquired pneumonia: findings from the ATTAIN studies.
        Expert Rev Anti Infect Ther. 2012; 10: 847-854
        • Corey G.R.
        • Kollef M.H.
        • Shorr A.F.
        • et al.
        Telavancin for hospital-acquired pneumonia: clinical response and 28-day survival.
        Antimicrob Agents Chemother. 2014; 58: 2030-2037
        • Billeter M.
        • Zervos M.J.
        • Chen A.Y.
        • Dalovisio J.R.
        • Kurukularatne C.
        Dalbavancin: a novel once-weekly lipoglycopeptide antibiotic.
        Clin Infect Dis. 2008; 46: 577-583
        • Pope S.D.
        • Roecker A.M.
        Dalbavancin: a novel lipoglycopeptide antibacterial.
        Pharmacotherapy. 2006; 26: 908-918
        • Boucher H.W.
        • Wilcox M.
        • Talbot G.H.
        • Puttagunta S.
        • Das A.F.
        • Dunne M.W.
        Once-weekly dalbavancin versus daily conventional therapy for skin infection.
        N Engl J Med. 2014; 370: 2169-2179
        • Saravolatz L.D.
        • Stein G.E.
        Oritavancin: a long-half-life lipoglycopeptide.
        Clin Infect Dis. 2015; 61: 627-632
        • Corey G.R.
        • Kabler H.
        • Mehra P.
        • et al.
        Single-dose oritavancin in the treatment of acute bacterial skin infections.
        N Engl J Med. 2014; 370: 2180-2190
        • Corey G.R.
        • Good S.
        • Jiang H.
        • et al.
        Single-dose oritavancin versus 7-10 days of vancomycin in the treatment of gram-positive acute bacterial skin and skin structure infections: the SOLO II noninferiority study.
        Clin Infect Dis. 2015; 60: 254-262
        • Burdette S.D.
        • Trotman R.
        Tedizolid: the first once-daily oxazolidinone class antibiotic.
        Clin Infect Dis. 2015; 61: 1315-1321
        • Prokocimer P.
        • De Anda C.
        • Fang E.
        • Mehra P.
        • Das A.
        Tedizolid phosphate vs linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial.
        JAMA. 2013; 309: 559-569
        • Moran G.J.
        • Fang E.
        • Corey G.R.
        • Das A.F.
        • De Anda C.
        • Prokocimer P.
        Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial.
        Lancet Infect Dis. 2014; 14: 696-705
        • Das D.
        • Tulkens P.M.
        • Mehra P.
        • Fang E.
        • Prokocimer P.
        Tedizolid phosphate for the management of acute bacterial skin and skin structure infections: safety summary.
        Clin Infect Dis. 2014; 58: S51-S57
        • Shorr A.F.
        • Lodise T.P.
        • Corey G.R.
        • et al.
        Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections.
        Antimicrob Agents Chemother. 2015; 59: 864-871
        • Wood M.J.
        The comparative efficacy and safety of teicoplanin and vancomycin.
        J Antimicrob Chemother. 1996; 37: 209-222
        • Wood M.J.
        Comparative safety of teicoplanin and vancomycin.
        J Chemother. 2000; 12: 21-25
        • Gemmell C.G.
        • Edwards D.I.
        • Fraise A.P.
        • et al.
        Guidelines for the prophylaxis and treatment of methicillin-resistant staphylococcus aureus (MRSA) infections in the UK.
        J Antimicrob Chemother. 2006; 57: 589-608
        • Gould F.K.
        • Brindle R.
        • Chadwick P.R.
        • et al.
        Guidelines (2008) for the prophylaxis and treatment of methicillin-resistant staphylococcus aureus (MRSA) infections in the united kingdom.
        J Antimicrob Chemother. 2009; 63: 849-861
        • MacGowan A.P.
        • McMullin C.M.
        • White L.O.
        • Reeves D.S.
        • Davis E.
        • Speller D.C.
        Serum monitoring of teicoplanin.
        J Antimicrob Chemother. 1992; 30: 399-402
        • Lee C.H.
        • Tsai C.Y.
        • Li C.C.
        • Chien C.C.
        • Liu J.W.
        Teicoplanin therapy for MRSA bacteraemia: a retrospective study emphasizing the importance of maintenance dosing in improving clinical outcomes.
        J Antimicrob Chemother. 2015; 70: 257-263
        • Chang H.J.
        • Hsu P.C.
        • Yang C.C.
        • et al.
        Influence of teicoplanin MICs on treatment outcomes among patients with teicoplanin-treated methicillin-resistant staphylococcus aureus bacteraemia: a hospital-based retrospective study.
        J Antimicrob Chemother. 2012; 67: 736-741
        • Bertrand X.
        • Hocquet D.
        • Thouverez M.
        • Plesiat P.
        • Talon D.
        Characterisation of methicillin-resistant staphylococcus aureus with reduced susceptibility to teicoplanin in eastern france.
        Eur J Clin Microbiol Infect Dis. 2003; 22: 504-506
        • Aucken H.M.
        • Ganner M.
        • Murchan S.
        • Cookson B.D.
        • Johnson A.P.
        A new UK strain of epidemic methicillin-resistant staphylococcus aureus (EMRSA-17) resistant to multiple antibiotics.
        J Antimicrob Chemother. 2002; 50: 171-175
        • Elsaghier A.A.
        • Aucken H.M.
        • Hamilton-Miller J.M.
        • Shaw S.
        • Kibbler C.C.
        Resistance to teicoplanin developing during treatment of methicillin-resistant staphylococcus aureus infection.
        J Antimicrob Chemother. 2002; 49: 423-424
        • Pankey G.A.
        Tigecycline J Antimicrob Chemother. 2005; 56: 470-480
        • Kaya O.
        • Akcam F.Z.
        • Temel E.N.
        In vitro activities of linezolid and tigecycline against methicillin-resistant staphylococcus aureus strains.
        Microb Drug Resist. 2008; 14: 151-153
        • Dowzicky M.J.
        Susceptibility to tigecycline and linezolid among gram-positive isolates collected in the united states as part of the tigecycline evaluation and surveillance trial (TEST) between 2004 and 2009.
        Clin Ther. 2011; 33: 1964-1973
        • Goff D.A.
        • Dowzicky M.J.
        Prevalence and regional variation in meticillin-resistant staphylococcus aureus (MRSA) in the USA and comparative in vitro activity of tigecycline, a glycylcycline antimicrobial.
        J Med Microbiol. 2007; 56: 1189-1193
        • Yahav D.
        • Lador A.
        • Paul M.
        • Leibovici L.
        Efficacy and safety of tigecycline: a systematic review and meta-analysis.
        J Antimicrob Chemother. 2011; 66: 1963-1971
        • Prasad P.
        • Sun J.
        • Danner R.L.
        • Natanson C.
        Excess deaths associated with tigecycline after approval based on noninferiority trials.
        Clin Infect Dis. 2012; 54: 1699-1709
        • Eliopoulos G.M.
        Quinupristin-dalfopristin and linezolid: evidence and opinion.
        Clin Infect Dis. 2003; 36: 473-481
        • Fuchs P.C.
        • Barry A.L.
        • Brown S.D.
        Bactericidal activity of quinupristin-dalfopristin against staphylococcus aureus: clindamycin susceptibility as a surrogate indicator.
        Antimicrob Agents Chemother. 2000; 44: 2880-2882
        • Drew R.H.
        • Perfect J.R.
        • Srinath L.
        • Kurkimilis E.
        • Dowzicky M.
        • Talbot G.H.
        Treatment of methicillin-resistant staphylococcus aureus infections with quinupristin-dalfopristin in patients intolerant of or failing prior therapy. for the synercid emergency-use study group.
        J Antimicrob Chemother. 2000; 46: 775-784
        • Kahan F.M.
        • Kahan J.S.
        • Cassidy P.J.
        • Kropp H.
        The mechanism of action of fosfomycin (phosphonomycin).
        Ann N Y Acad Sci. 1974; 235: 364-386
        • Popovic M.
        • Steinort D.
        • Pillai S.
        • Joukhadar C.
        Fosfomycin: an old, new friend?.
        Eur J Clin Microbiol Infect Dis. 2010; 29: 127-142
        • Alvarez S.
        • Jones M.
        • Berk S.L.
        In vitro activity of fosfomycin, alone and in combination, against methicillin-resistant staphylococcus aureus.
        Antimicrob Agents Chemother. 1985; 28: 689-690
        • del Rio A.
        • Gasch O.
        • Moreno A.
        • et al.
        Efficacy and safety of fosfomycin plus imipenem as rescue therapy for complicated bacteremia and endocarditis due to methicillin-resistant staphylococcus aureus: a multicenter clinical trial.
        Clin Infect Dis. 2014; 59: 1105-1112
        • Miro J.M.
        • Entenza J.M.
        • Del Rio A.
        • et al.
        High-dose daptomycin plus fosfomycin is safe and effective in treating methicillin-susceptible and methicillin-resistant staphylococcus aureus endocarditis.
        Antimicrob Agents Chemother. 2012; 56: 4511-4515
        • Shaw E.
        • Miro J.M.
        • Puig-Asensio M.
        • et al.
        Daptomycin plus fosfomycin versus daptomycin monotherapy in treating MRSA: protocol of a multicentre, randomised, phase III trial.
        BMJ Open. 2015; 5 (e006723-2014-006723)
        • Howden B.P.
        • Grayson M.L.
        Dumb and dumber–the potential waste of a useful antistaphylococcal agent: emerging fusidic acid resistance in staphylococcus aureus.
        Clin Infect Dis. 2006; 42: 394-400
        • Howden B.P.
        • Ward P.B.
        • Charles P.G.
        • et al.
        Treatment outcomes for serious infections caused by methicillin-resistant staphylococcus aureus with reduced vancomycin susceptibility.
        Clin Infect Dis. 2004; 38: 521-528
        • Collignon P.
        • Turnidge J.
        Fusidic acid in vitro activity.
        Int J Antimicrob Agents. 1999; 12: S45-S58
        • Turnidge J.
        • Collignon P.
        Resistance to fusidic acid.
        Int J Antimicrob Agents. 1999; 12: S35-S44
        • Chang S.C.
        • Hsieh S.M.
        • Chen M.L.
        • Sheng W.H.
        • Chen Y.C.
        Oral fusidic acid fails to eradicate methicillin-resistant staphylococcus aureus colonization and results in emergence of fusidic acid-resistant strains.
        Diagn Microbiol Infect Dis. 2000; 36: 131-136
        • Perlroth J.
        • Kuo M.
        • Tan J.
        • Bayer A.S.
        • Miller L.G.
        Adjunctive use of rifampin for the treatment of staphylococcus aureus infections: a systematic review of the literature.
        Arch Intern Med. 2008; 168: 805-819
        • Zimmerli W.
        • Widmer A.F.
        • Blatter M.
        • Frei R.
        • Ochsner P.E.
        Role of rifampin for treatment of orthopedic implant-related staphylococcal infections: a randomized controlled trial. foreign-body infection (FBI) study group.
        JAMA. 1998; 279: 1537-1541
        • Chambers H.F.
        Community-associated MRSA–resistance and virulence converge.
        N Engl J Med. 2005; 352: 1485-1487
        • Naimi T.S.
        • LeDell K.H.
        • Como-Sabetti K.
        • et al.
        Comparison of community- and health care-associated methicillin-resistant staphylococcus aureus infection.
        JAMA. 2003; 290: 2976-2984
        • Miller L.G.
        • Daum R.S.
        • Creech C.B.
        • et al.
        Clindamycin versus trimethoprim-sulfamethoxazole for uncomplicated skin infections.
        N Engl J Med. 2015; 372: 1093-1103
        • Moran G.J.
        • Krishnadasan A.
        • Gorwitz R.J.
        • et al.
        Methicillin-resistant S. aureus infections among patients in the emergency department.
        N Engl J Med. 2006; 355: 666-674
        • Frazee B.W.
        • Lynn J.
        • Charlebois E.D.
        • Lambert L.
        • Lowery D.
        • Perdreau-Remington F.
        High prevalence of methicillin-resistant staphylococcus aureus in emergency department skin and soft tissue infections.
        Ann Emerg Med. 2005; 45: 311-320
        • Fridkin S.K.
        • Hageman J.C.
        • Morrison M.
        • et al.
        Methicillin-resistant staphylococcus aureus disease in three communities.
        N Engl J Med. 2005; 352: 1436-1444
        • King M.D.
        • Humphrey B.J.
        • Wang Y.F.
        • Kourbatova E.V.
        • Ray S.M.
        • Blumberg H.M.
        Emergence of community-acquired methicillin-resistant staphylococcus aureus USA 300 clone as the predominant cause of skin and soft-tissue infections.
        Ann Intern Med. 2006; 144: 309-317
        • Rajendran P.M.
        • Young D.
        • Maurer T.
        • et al.
        Randomized, double-blind, placebo-controlled trial of cephalexin for treatment of uncomplicated skin abscesses in a population at risk for community-acquired methicillin-resistant staphylococcus aureus infection.
        Antimicrob Agents Chemother. 2007; 51: 4044-4048
        • Lee M.C.
        • Rios A.M.
        • Aten M.F.
        • et al.
        Management and outcome of children with skin and soft tissue abscesses caused by community-acquired methicillin-resistant staphylococcus aureus.
        Pediatr Infect Dis J. 2004; 23: 123-127
        • Stevens D.L.
        • Bisno A.L.
        • Chambers H.F.
        • et al.
        Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of america.
        Clin Infect Dis. 2014; 59: e10-52
        • Daum R.S.
        Clinical practice. skin and soft-tissue infections caused by methicillin-resistant staphylococcus aureus.
        N Engl J Med. 2007; 357: 380-390
        • Ruhe J.J.
        • Smith N.
        • Bradsher R.W.
        • Menon A.
        Community-onset methicillin-resistant staphylococcus aureus skin and soft-tissue infections: impact of antimicrobial therapy on outcome.
        Clin Infect Dis. 2007; 44: 777-784
        • Martinez-Aguilar G.
        • Hammerman W.A.
        • Mason Jr., E.O.
        • Kaplan S.L.
        Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible staphylococcus aureus in children.
        Pediatr Infect Dis J. 2003; 22: 593-598
        • Darley E.S.
        • MacGowan A.P.
        Antibiotic treatment of gram-positive bone and joint infections.
        J Antimicrob Chemother. 2004; 53: 928-935
        • Dombrowski J.C.
        • Winston L.G.
        Clinical failures of appropriately-treated methicillin-resistant staphylococcus aureus infections.
        J Infect. 2008; 57: 110-115
        • Crompton J.A.
        • North D.S.
        • McConnell S.A.
        • Lamp K.C.
        Safety and efficacy of daptomycin in the treatment of osteomyelitis: results from the CORE registry.
        J Chemother. 2009; 21: 414-420
        • Gallagher J.C.
        • Huntington J.A.
        • Culshaw D.
        • McConnell S.A.
        • Yoon M.
        • Berbari E.
        Daptomycin therapy for osteomyelitis: a retrospective study.
        BMC Infect Dis. 2012; 12: 133
        • Daver N.G.
        • Shelburne S.A.
        • Atmar R.L.
        • et al.
        Oral step-down therapy is comparable to intravenous therapy for staphylococcus aureus osteomyelitis.
        J Infect. 2007; 54: 539-544