Iron oxide nanoparticles based antiviral activity of H1N1 influenza A virus

Published:February 12, 2019DOI:https://doi.org/10.1016/j.jiac.2018.12.006

      Abstract

      Influenza virus is a common human pathogenic agent that has caused serious respiratory illness and death over the past century and in recent year. Treatment options against pandemic influenza strain A/H1N1 are very limited and unsatisfactory. Therefore we have developed iron oxide nanoparticles (IO-NPs) with particle size in the range of 10–15 nm against pandemic influenza strain A/H1N1/Eastern India/66/PR8-H1N1. Cell viability and anti-influenza activity was measured by MTT assay, plaque inhibition and quantifying viral transcripts using quantitative real-time PCR with Iron oxide nanoparticles in a dose- and time-dependent manner. 50% cell viability (TD50) was observed at 4.25 pg ± .2 pg of Iron oxide nanoparticles. The percentage of plaque inhibition relative to the infection and the IC50 (50% virus reduction) of PR8-H1N1strain (0.5 moi) were measured in vitro by the plate forming unit (pfu) in MA104 cells. Finding were observed at 01 pg after 72 h. The Antiviral activity determined by change in viral RNA transcripts within 24 h of virus infection by RT-PCR, 08 fold reductions in virus found when treated with Iron oxide nanoparticles Thus; it opens a new avenue for use of IP-NPs against virus infections.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Journal of Infection and Chemotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Simonsen L.
        • Fukuda K.
        • Schonberger L.B.
        • Cox N.J.
        The impact of influenza epidemics on hospitalizations.
        J Infect Dis. 2000; 181: 831-837
        • Suwannakarn K.
        • Chieochansin T.
        • Thongmee C.
        • Makkoch J.
        • Praianantathavorn K.
        • Theamboonlers A.
        • et al.
        Molecular evolution of human H1N1 and H3N2 influenza A virus in Thailand, 2006–2009.
        PLoS One. 2010; 5: e9717
        • Cox N.
        • Subbarao K.
        Global epidemiology of influenza: past and present.
        Annu Rev Med. 2000; 51: 407-421
        • Wang T.T.
        • Tan G.S.
        • Hai R.
        • Pica N.
        • Petersen E.
        • Moran T.M.
        • et al.
        Broadly protective monoclonal antibodies against H3 influenza viruses following sequential immunization with different hemagglutinins.
        PLoS Pathog. 2010; 6: e1000796
        • Webby R.J.
        • Webster R.G.
        Are we ready for pandemic influenza?.
        Science. 2003; 302: 1519-1522
        • Chu C.
        • Lugovtsev V.
        • Golding H.
        • Betenbaugh M.
        • Shiloach J.
        Conversion of MDCK cell line to suspension culture by transfecting with human siat7e gene and its application for influenza virus production.
        P Natl Acad Sci. 2009; 106: 14802-14807
        • Bardiya N.
        • Bae J.-H.
        Influenza vaccines: recent advances in production technologies.
        Appl Microbiol Biotechnol. 2005; 67: 299-305
        • Khanna M.
        • Kumar P.
        • Choudhary K.
        • Kumar B.
        • Vijayan V.
        Emerging influenza virus: a global threat.
        J Biosci. 2008; 33: 475-482
        • Patient A.
        Swine influenza A (H1N1) infection in two children—Southern California, March–April 2009.
        MMWR (Morb Mortal Wkly Rep). 2009; 58
        • Hillyard D.R.
        Novel swine-origin influenza A (H1N1) virus investigation team.
        N Engl J Med. 2009; 360: 25
      1. (2009 [3rd June])
        • Moscona A.
        Neuraminidase inhibitors for influenza.
        N Engl J Med. 2005; 353: 1363-1373
        • Practices ACoI, Control CfD, Prevention, Control CfD
        Immunization of health-care personnel: recommendations of the advisory committee on immunization practices (ACIP).
        MMWR Recomm Rep (Morb Mortal Wkly Rep). 2011; 60
        • Takeda M.
        • Pekosz A.
        • Shuck K.
        • Pinto L.H.
        • Lamb R.A.
        Influenza a virus M2 ion channel activity is essential for efficient replication in tissue culture.
        J Virol. 2002; 76: 1391-1399
        • Moscona A.
        Medical management of influenza infection.
        Annu Rev Med. 2008; 59: 397-413
        • Bönnemann H.
        • Richards R.M.
        Nanoscopic metal particles− synthetic methods and potential applications.
        Eur J Inorg Chem. 2001; 2001: 2455-2480
        • Percival S.L.
        • Bowler P.G.
        • Dolman J.
        Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model.
        Int Wound J. 2007; 4: 186-191
        • Singh R.
        • Nalwa H.S.
        Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs.
        J Biomed Nanotechnol. 2011; 7: 489-503
        • Shahverdi A.R.
        • Fakhimi A.
        • Shahverdi H.R.
        • Minaian S.
        Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli.
        Nanomed-Nanotechnol. 2007; 3: 168-171
        • Nam J.-M.
        • Thaxton C.S.
        • Mirkin C.A.
        Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins.
        Science. 2003; 301: 1884-1886
        • Tkachenko A.G.
        • Xie H.
        • Coleman D.
        • Glomm W.
        • Ryan J.
        • Anderson M.F.
        • et al.
        Multifunctional gold nanoparticle− peptide complexes for nuclear targeting.
        J Am Chem Soc. 2003; 125: 4700-4701
        • Hirsch L.R.
        • Stafford R.J.
        • Bankson J.A.
        • Sershen S.R.
        • Rivera B.
        • Price R.E.
        • et al.
        Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.
        P Natl Acad Sci. 2003; 100: 13549-13554
        • Kumara R.
        • Sahoo G.C.
        • Pandeya K.
        • Dasa V.
        • Yousuf M.
        • Ansaria S.R.
        • et al.
        PLGA-PEG Encapsulated sitamaquine nanoparticles drug delivery system against Leishmania donovani.
        J Sci Innov Res. 2014; 3: 85-90
        • Kumar R.
        • Sahoo G.C.
        • Pandey K.
        • Das V.
        • Topno R.K.
        • Ansari M.Y.
        • et al.
        Development of PLGA–PEG encapsulated miltefosine based drug delivery system against visceral leishmaniasis Mat.
        Sci Eng C-Mater. 2016; 59: 748-753
        • Birla S.
        • Tiwari V.
        • Gade A.
        • Ingle A.
        • Yadav A.
        • Rai M.
        Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
        Lett Appl Microbiol. 2009; 48: 173-179
        • Gajbhiye M.
        • Kesharwani J.
        • Ingle A.
        • Gade A.
        • Rai M.
        Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole.
        Nanomed-Nanotechnol. 2009; 5: 382-386
        • Ingle A.
        • Gade A.
        • Pierrat S.
        • Sonnichsen C.
        • Rai M.
        Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria.
        Curr Nanosci. 2008; 4: 141-144
        • Raheman F.
        • Deshmukh S.
        • Ingle A.
        • Gade A.
        • Rai M.
        Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L).
        Nano Biomed Eng. 2011; 3: 174-178
      2. Detection and management of mycotoxigenic fungi in nuts and dry fruits.
        in: Jogee S. Ingle A. Gupta I. Bonde S. Rai M. II International Symposium on Mycotoxins in Nuts and Dried Fruits 963. 2011
        • Cao X.
        • Cheng C.
        • Ma Y.
        • Zhao C.
        Preparation of silver nanoparticles with antimicrobial activities and the researches of their biocompatibilities.
        J Mater Sci Mater Med. 2010; 21: 2861-2868
        • Devi L.S.
        • Joshi S.
        Antimicrobial and synergistic effects of silver nanoparticles synthesized using soil fungi of high altitudes of eastern Himalaya.
        Mycobiology. 2012; 40: 27-34
        • You C.
        • Han C.
        • Wang X.
        • Zheng Y.
        • Li Q.
        • Hu X.
        • et al.
        The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity.
        Mol Biol Rep. 2012; 39: 9193-9201
        • Nayak M.K.
        • Agrawal A.S.
        • Bose S.
        • Naskar S.
        • Bhowmick R.
        • Chakrabarti S.
        • et al.
        Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses.
        J Antimicrob Chemother. 2014; 69: 1298-1310
        • Nguyen J.T.
        • Hoopes J.D.
        • Le M.H.
        • Smee D.F.
        • Patick A.K.
        • Faix D.J.
        • et al.
        Triple combination of amantadine, ribavirin, and oseltamivir is highly active and synergistic against drug resistant influenza virus strains in vitro.
        PLoS One. 2010; 5: e9332
        • Elechiguerra J.L.
        • Burt J.L.
        • Morones J.R.
        • Camacho-Bragado A.
        • Gao X.
        • Lara H.H.
        • et al.
        Interaction of silver nanoparticles with HIV-1.
        J Nanobiotechnol. 2005; 3: 6
        • Lu L.
        • Sun R.
        • Chen R.
        • Hui C.-K.
        • Ho C.-M.
        • Luk J.M.
        • et al.
        Silver nanoparticles inhibit hepatitis B virus replication.
        Antivir Ther. 2008; 13: 253
        • Kumar R.
        • Sahoo G.C.
        • Das V.
        • Pandey K.
        • Das P.
        Effects of core iron oxide nanoparticles on microbial control and bacteriostatic activity against Escherichia coli, Staphylococcus aureus and Mycobacterium smegmatis.
        J Sci Innov Res. 2014; 3: 495-498
        • Kumar R.
        • Sahoo G.C.
        • Pandey K.
        • Das V.
        • Das P.
        Study the effects of PLGA-PEG encapsulated amphotericin B nanoparticle drug delivery system against Leishmania donovani.
        Drug Deliv. 2015; 22: 383-388
        • Kumar R.
        • Pandey K.
        • Sahoo G.C.
        • Das S.
        • Das V.
        • Topno R.
        • et al.
        Development of high efficacy peptide coated iron oxide nanoparticles encapsulated amphotericin B drug delivery system against visceral leishmaniasis.
        Mat Sci Eng C-Mater. 2017; 75: 1465-1471
        • Elechiguerra J.L.
        • Burt J.L.
        • Morones J.R.
        • Camacho-Bragado A.
        • Gao X.
        • Lara H.H.
        • et al.
        Interaction of silver nanoparticles with HIV-1.
        J Nanobiotechnol. 2005; 3: 1-10
        • Villanueva A.
        • De La Presa P.
        • Alonso J.
        • Rueda T.
        • Martinez A.
        • Crespo P.
        • et al.
        Hyperthermia HeLa cell treatment with silica-coated manganese oxide nanoparticles.
        J Phys Chem C. 2010; 114: 1976-1981
        • Creixell M.
        • Bohorquez A.C.
        • Torres-Lugo M.
        • Rinaldi C.
        EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise.
        ACS Nano. 2011; 5: 7124-7129
      3. A preliminary assessment of silver nanoparticle inhibition of monkey pox virus plaque formation. 2008 (Mori et al Nanoscale Research letters 2013, 8:93)
        • Jeon H.J.
        • Yi S.C.
        • Oh S.G.
        Preparation and antibacterial effects of Ag-SiO2 thin films by sol-gel method.
        Biomaterials. 2003; 24: 4921