Clostridium ramosum bacteremia: A case series at a general acute care hospital

Published:September 25, 2022DOI:


      Clostridium ramosum infections have been rarely reported, probably due to underestimating in clinical practice. Seven patients with bacteremia from gastrointestinal sources and skin and soft tissue were recognized between 2009 and 2020. Most of them were older and in compromised status, and they had risk factors including cancer, diabetes, liver cirrhosis, gangrene, and pressure ulcers. The source of infections was considered bacterial translocation from the gastrointestine and the skin and soft tissue infections. All patients were treated with antimicrobials, and two received surgical interventions. Four patients died secondary to sepsis due to C. ramosum. The bacteremia of C. ramosum should be appropriately evaluated and treated, especially in compromised hosts.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Infection and Chemotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Yutin N.
        • Galperin M.Y.
        A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia.
        Environ Microbiol. 2013; 15: 2631-2641
        • Meier-Kolthoff J.P.
        • Sardà Carbasse J.
        • Peinado-Olarte R.
        • Göker M.
        TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes.
        Nucleic Acids Res. 2022; 50: D801-D807
        • van der Vorm E.R.
        • von Rosenstiel I.A.
        • Spanjaard L.
        • Dankert J.
        Gas gangrene in an immunocompromised girl due to a Clostridium ramosum infection.
        Clin Infect Dis. 1999; 28: 923-924
        • Milosavljevic M.N.
        • Kostic M.
        • Milovanovic J.
        • Zaric R.Z.
        • Stojadinovic M.
        • Jankovic S.M.
        • et al.
        Antimicrobial treatment of Erysipelatoclostridium ramosum invasive infections: a systematic review.
        Rev Inst Med Trop Sao Paulo. 2021; 63: e30
        • Forrester J.D.
        • Spain D.A.
        Clostridium ramosum bacteremia: case report and literature review.
        Surg Infect. 2014; 15: 343-346
        • Dubois D.
        • Grare M.
        • Prere M.-F.
        • Segonds C.
        • Marty N.
        • Oswalda E.
        Performances of the vitek MS matrix-assisted laser desorption ionization–time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology.
        J Clin Microbiol. 2012; 50: 2568-2576
        • Saito A.
        Strongyloidiasis: epidemiology, clinical manifestations and new methods for diagnosis and treatment.
        J Infect Chemother. 1995; 1: 98-106
        • Gollapudi L.A.
        • Narurkar R.
        • Wang G.
        • Dhand A.
        Clostridium ramosum (C. ramosum) bacteremia: single center study.
        Open Forum Infect Dis. 2017; 4: S556
        • Lim Y.K.
        • Oh S.M.
        • Kweon O.J.
        • Lee M.-K.
        Two cases of bacteremias caused by Clostridium ramosum.
        Ann Clin Microbiol. 2015; 18: 98-101
        • Senda S.
        • Fujiyama
        • Ushijima T.
        • Hodohara K.
        • Bamba T.
        • Hosoda S.
        • et al.
        Clostridium ramosum, an IgA protease-producing species and its ecology in the human intestinal tract.
        Microbiol Immunol. 1985; 29: 1019-1028
        • Kosowska K.
        • Reinholdt J.
        • Rasmussen L.K.
        • Sabat A.
        • Potempa J.
        • Kilian M.
        • et al.
        The Clostridium ramosum IgA proteinase represents a novel type of metalloendopeptidasE.
        J Biol Chem. 2002; 277: 11987-11994
        • Mohandas R.
        • Poduval R.D.
        • Unnikrishanan D.
        • Corpuz M.
        Clostridium ramosum bacteremia and osteomyelitis in a patient with infected pressure sores.
        Infect Dis Clin Pract. 2001; 10: 123-124
        • Hadfield M.J.
        • Kota S.V.
        • Siragusa S.M.
        • Pettitt R.M.
        Skin & soft tissue infections: it's more than Just MRSA.
        Osteopath Fam Physician. 2019; 11: 28-32
        • Tajima T.
        • Asai Y.
        • Endo M.
        • Suzuki T.
        • Matsunaga N.
        • Tsuzuki S.
        • et al.
        Rate of blood culture submissions in Japan as an indicator of bloodstream infections.
        J Infect Chemother. 2021; 27: 1270-1272
        • Wilson M.L.
        • Mitchell M.
        • Morris A.J.
        • Murray P.R.
        • Reimer L.G.
        • Reller L.B.
        • et al.
        Principles and procedures for blood cultures; approved guideline. CLSI document M47-A.
        Clinical and Laboratory Standards Institute, Wayne, PA2007
        • Legaria M.C.
        • García S.D.
        • Tudanca V.
        • Barberis C.
        • Cipolla L.
        • Cornet L.
        • et al.
        Clostridium ramosum rapidly identified by MALDI-TOF MS. A rare gram-variable agent of bacteraemia.
        Access Microbiol. 2020; 2acmi000137
        • Benjamin B.
        • Kan M.
        • Schwartz D.
        • Siegman-Igra Y.
        The possible significance of Clostridium spp. in blood cultures.
        Clin Microbiol Infect. 2006; 12: 1006-1012
        • Chen Y.M.
        • Lee H.C.
        • Chang C.M.
        • Chuang Y.C.
        • Ko W.C.
        Clostridium bacteremia: emphasis on the poor prognosis in cirrhotic patients.
        J Microbiol Immunol Infect. 2001; 34: 113-118
        • Koyanagi Y.
        • Suzuki R.
        • Ihara K.
        • Miyagi H.
        • Isogai H.
        • Yoneymaa H.
        • et al.
        Intestinal Clostridium species lower host susceptibility to enterohemorrhagic Escherichia coli O157:H7 infection.
        Pathog Dis. 2019; 77 (ftz036)
        • Xu J.
        • Koyanagi Y.
        • Isogai E.
        • Nakamura S.
        Effects of fermentation products of the commensal bacterium Clostridium ramosum on motility, intracellular pH, and flagellar synthesis of enterohemorrhagic Escherichia coli.
        Arch Microbiol. 2019; 201: 841-846
        • Li Y.
        • Shan M.
        • Zhu Z.
        • Mao X.
        • Yan M.
        • Chen Y.
        • et al.
        Application of MALDI-TOF MS to rapid identification of anaerobic bacteria.
        BMC Infect Dis. 2019; 19: 941
        • Ramos L.S.
        • Rodloff A.C.
        Identification of Clostridium species using the VITEK® MS.
        Anaerobe. 2018; 54: 217-223
        • Tsukimoto E.R.
        • Rossi F.
        Evaluation of MALDI-TOF mass spectrometry (VITEK-MS) compared to the ANC card (Vitek 2) for the identification of clinically significant anaerobes.
        J Bras Patol Med Lab. 2018; 54: 206-212
        • Kim Y.J.
        • Kim S.H.
        • Park H.J.
        • Park H.G.
        • Park D.
        • Song S.A.
        • et al.
        MALDI-TOF MS is more accurate than VITEK II ANC card and API Rapid ID 32 A system for the identification of Clostridium species.
        Anaerobe. 2016; 40: 73-75
        • Alexander C.J.
        • Citron D.M.
        • Brazier J.S.
        • Goldstein E.J.
        Identification and antimicrobial resistance patterns of clinical isolates of Clostridium clostridioforme, Clostridium innocuum, and Clostridium ramosum compared with those of clinical isolates of Clostridium perfringens.
        J Clin Microbiol. 1995; 33: 3209-3215