Prevalence of antimicrobial-resistant Cutibacterium isolates and development of multiplex PCR method for Cutibacterium species identification

Published:November 12, 2022DOI:


      • Multidrug-resistant Cutibacterium species inhabit the skin.
      • Antimicrobial resistance levels differed among Cutibacterium species.
      • Multiplex PCR method was developed for rapid identification of Cutibacterium species.



      Cutibacterium species such as C. acnes, C. avidum, and C. granulosum are known anaerobic skin inhabitants and often cause surgical site infections. These species are genetically similar and are difficult to identify rapidly. In addition, their pathogenicity and antimicrobial resistance remain unknown. In this study, antimicrobial resistance in Cutibacterium isolates was studied and a multiplex PCR method for their identification was developed.


      A total of 497 C. acnes, 71 C. avidum, and 25 C. granulosum strains which were isolated from the acne pustule and infectious regions, were used.


      The antimicrobial resistance rates of C. acnes, C. avidum, and C. granulosum strains isolated from patients with acne vulgaris were higher than those of strains isolated from patients with infectious diseases. In particular, macrolide-clindamycin-resistant strains were isolated most frequently from all species. Among the resistant strains, strains with 23S rRNA mutations were the most common in C. acnes (24.3%, 71/292), whereas C. avidum and C. granulosum strains were most frequently found with erm(X). For the first time, a C. granulosum strain carrying pTZC1, which codes erm(50) and tet(W), was isolated from patients with acne vulgaris. Regarding the rapid identification of causative pathogens from infectious regions, three Cutibacterium species were identified with 100% sensitivity and specificity using multiplex PCR method.


      Our data showed that antimicrobial resistance differed among Cutibacterium species. The multiplex PCR method may contribute to the rapid detection of Cutibacterium species and selection of appropriate antimicrobial agents.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to Journal of Infection and Chemotherapy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Dekio I.
        • Asahina A.
        • Shah H.N.
        Unravelling the eco-specificity and pathophysiological properties of Cutibacterium species in the light of recent taxonomic changes.
        Anaerobe. 2021; 71102411
        • Achermann Y.
        • Goldstein E.J.
        • Coenye T.
        • Shirtliff M.E.
        Propionibacterium acnes: from commensal to opportunistic biofilm-associated implant pathogen.
        Clin Microbiol Rev. 2014; 27: 419-440
        • Broly M.
        • Ruffier d'Epenoux L.
        • Guillouzouic A.
        • Le Gargasson G.
        • Juvin M.E.
        • Leroy A.G.
        • et al.
        Propionibacterium/cutibacterium species-related positive samples, identification, clinical and resistance features: a 10-year survey in a French hospital.
        Eur J Clin Microbiol Infect Dis. 2020; 39: 1357-1364
        • Hudek R.
        • Sommer F.
        • Kerwat M.
        • Abdelkawi A.F.
        • Loos F.
        • Gohlke F.
        Propionibacterium acnes in shoulder surgery: true infection, contamination, or commensal of the deep tissue?.
        J Shoulder Elbow Surg. 2014; 23: 1763-1771
        • Renz N.
        • Mudrovcic S.
        • Perka C.
        • Trampuz A.
        Orthopedic implant-associated infections caused by Cutibacterium spp. - a remaining diagnostic challenge.
        PLoS One. 2018; 13e0202639
        • Benz M.S.
        • Scott I.U.
        • Flynn Jr., H.W.
        • Unonius N.
        • Miller D.
        Endophthalmitis isolates and antibiotic sensitivities: a 6-year review of culture-proven cases.
        Am J Ophthalmol. 2004; 137: 38-42
        • Ely A.L.
        • Neely K.
        Propionibacterium acnes endophthalmitis following baerveldt glaucoma device implantation.
        J Glaucoma. 2020; 29: e71-e73
        • Ohnsman C.
        • Ritterband D.
        • O'Brien T.
        • Girgis D.
        • Kabat A.
        Comparison of azithromycin and moxifloxacin against bacterial isolates causing conjunctivitis.
        Curr Med Res Opin. 2007; 23: 2241-2249
        • Nakase K.
        • Koizumi J.
        • Midorikawa R.
        • Yamasaki K.
        • Tsutsui M.
        • Aoki S.
        • et al.
        Cutibacterium acnes phylogenetic type ic and ii isolated from patients with non-acne diseases exhibit high-level biofilm formation.
        Int J Med Microbiol. 2021; 311151538
        • Corvec S.
        Clinical and biological features of cutibacterium (formerly propionibacterium) avidum, an underrecognized microorganism.
        Clin Microbiol Rev. 2018; 31
        • Bentorki A.A.
        • Gouri A.
        • Yakhlef A.
        • Touaref A.
        • Bensouilah T.
        • Gueroudj A.
        Propionibacterium avidum cutaneous abscess in a young immunocompetent.
        Ann Biol Clin. 2013; 71: 703-706
        • Isabel R.
        • Monica M.
        Cutibacterium avidum: a rare but expected agent of breast implant infection.
        IDCases. 2019; 17e00546
        • Clayton J.J.
        • Baig W.
        • Reynolds G.W.
        • Sandoe J.A.T.
        Endocarditis caused by Propionibacterium species: a report of three cases and a review of clinical features and diagnostic difficulties.
        J Med Microbiol. 2006; 55: 981-987
        • Chaudhry R.
        • Dhawan B.
        • Pandey A.
        • Choudhary S.K.
        • Kumar A.S.
        Propionibacterium granulosum: a rare cause of endocarditis.
        J Infect. 2000; 41: 284
        • Li Y.
        • Shan M.
        • Zhu Z.
        • Mao X.
        • Yan M.
        • Chen Y.
        • et al.
        Application of maldi-tof ms to rapid identification of anaerobic bacteria.
        BMC Infect Dis. 2019; 19: 941
        • Teramoto K.
        • Okubo T.
        • Yamada Y.
        • Sekiya S.
        • Iwamoto S.
        • Tanaka K.
        Classification of Cutibacterium acnes at phylotype level by maldi-ms proteotyping.
        Proc Jpn Acad Ser B Phys Biol Sci. 2019; 95: 612-623
        • Scholz C.F.P.
        • Kilian M.
        The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. Nov., Cutibacterium gen. Nov. And Pseudopropionibacterium gen. Nov.
        Int J Syst Evol Microbiol. 2016; 66: 4422-4432
        • Nakase K.
        • Hayashi N.
        • Akiyama Y.
        • Aoki S.
        • Noguchi N.
        Antimicrobial susceptibility and phylogenetic analysis of Propionibacterium acnes isolated from acne patients in Japan between 2013 and 2015.
        J Dermatol. 2017; 44: 1248-1254
        • Nakase K.
        • Nakaminami H.
        • Takenaka Y.
        • Hayashi N.
        • Kawashima M.
        • Noguchi N.
        Propionibacterium acnes is developing gradual increase in resistance to oral tetracyclines.
        J Med Microbiol. 2017; 66: 8-12
        • Ross J.I.
        • Eady E.A.
        • Carnegie E.
        • Cove J.H.
        Detection of transposon Tn5432-mediated macrolide-lincosamide-streptogramin B (MLSB) resistance in cutaneous propionibacteria from six european cities.
        J Antimicrob Chemother. 2002; 49: 165-168
        • Nakase K.
        • Nakaminami H.
        • Takenaka Y.
        • Hayashi N.
        • Kawashima M.
        • Noguchi N.
        A novel 23s rrna mutation in Propionibacterium acnes confers resistance to 14-membered macrolides.
        J Glob Antimicrob Resist. 2016; 6: 160-161
        • Aoki S.
        • Nakase K.
        • Hayashi N.
        • Nakaminami H.
        • Noguchi N.
        Increased prevalence of doxycycline low-susceptible Cutibacterium acnes isolated from acne patients in Japan caused by antimicrobial use and diversification of tetracycline resistance factors.
        J Dermatol. 2021; 48: 1365-1371
        • Nakase K.
        • Nakaminami H.
        • Takenaka Y.
        • Hayashi N.
        • Kawashima M.
        • Noguchi N.
        Relationship between the severity of acne vulgaris and antimicrobial resistance of bacteria isolated from acne lesions in a hospital in Japan.
        J Med Microbiol. 2014; 63: 721-728
        • Nakase K.
        • Sakuma Y.
        • Nakaminami H.
        • Noguchi N.
        Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase iv.
        Anaerobe. 2016; 42: 166-171
        • Aoki S.
        • Nakase K.
        • Nakaminami H.
        • Wajima T.
        • Hayashi N.
        • Noguchi N.
        Transferable multidrug-resistance plasmid carrying a novel macrolide-clindamycin resistance gene, erm(50), in Cutibacterium acnes.
        Antimicrob Agents Chemother. 2020; 64
        • Nakase K.
        • Aoki S.
        • Sei S.
        • Fukumoto S.
        • Horiuchi Y.
        • Yasuda T.
        • et al.
        Characterization of acne patients carrying clindamycin-resistant Cutibacterium acnes: a Japanese multicenter study.
        J Dermatol. 2020; 47: 863-869
        • Koizumi J.
        • Nakase K.
        • Hayashi N.
        • Nasu Y.
        • Hirai Y.
        • Nakaminami H.
        Multidrug-resistant Cutibacterium avidum isolated from patients with acne vulgaris and other infections.
        J Glob Antimicrob Resist. 2022; 28: 151-157
        • Barnard E.
        • Nagy I.
        • Hunyadkurti J.
        • Patrick S.
        • McDowell A.
        Multiplex touchdown pcr for rapid typing of the opportunistic pathogen Propionibacterium acnes.
        J Clin Microbiol. 2015; 53: 1149-1155
        • Noguchi N.
        • Nakaminami H.
        • Nakase K.
        • Sasatsu M.
        Characterization of Enterococcus strains contained in probiotic products.
        Biol Pharm Bull. 2011; 34: 1469-1473
        • Wright T.E.
        • Boyle K.K.
        • Duquin T.R.
        • Crane J.K.
        Propionibacterium acnes susceptibility and correlation with hemolytic phenotype.
        Inf Disp. 2016; 9: 39-44
        • CLSI
        Performance standard for antimicrobial susceptibility testing.
        31 th edition. 2021
        • Ishida N.
        • Nakaminami H.
        • Noguchi N.
        • Kurokawa I.
        • Nishijima S.
        • Sasatsu M.
        Antimicrobial susceptibilities of Propionibacterium acnes isolated from patients with acne vulgaris.
        Microbiol Immunol. 2008; 52: 621-624
        • Nakase K.
        • Nakaminami H.
        • Noguchi N.
        • Nishijima S.
        • Sasatsu M.
        First report of high levels of clindamycin-resistant Propionibacterium acnes carrying erm(X) in Japanese patients with acne vulgaris.
        J Dermatol. 2012; 39: 794-796
        • Jeverica S.
        • El Sayed F.
        • Camernik P.
        • Kocjancic B.
        • Sluga B.
        • Rottman M.
        • et al.
        Growth detection of Cutibacterium acnes from orthopaedic implant-associated infections in anaerobic bottles from bactec and bact/alert blood culture systems and comparison with conventional culture media.
        Anaerobe. 2020; 61102133
        • Adams M.W.
        • Jenney Jr., F.E.
        Clay MD and Johnson MK. Superoxide reductase: fact or fiction?.
        J Biol Inorg Chem. 2002; 7: 647-652
        • Cove J.H.
        • Holland K.T.
        • Cunliffe W.J.
        Effects of oxygen concentration on biomass production, maximum specific growth rate and extracellular enzyme production by three species of cutaneous propionibacteria grown in continuous culture.
        J Gen Microbiol. 1983; 129: 3327-3334
        • Capoor M.N.
        • Ruzicka F.
        • Sandhu G.
        • Rollason J.
        • Mavrommatis K.
        • Ahmed F.S.
        • et al.
        Importance of Propionibacterium acnes hemolytic activity in human intervertebral discs: a microbiological study.
        PLoS One. 2018; 13e0208144
        • Fujimura S.
        • Ko H.L.
        • Pulverer G.
        • Jeljaszewicz J.
        Hemolysin of Propionibacterium avidum.
        Zentralbl Bakteriol Mikrobiol Hyg. 1982; 252: 108-115
        • Hoeffler U.
        Enzymatic and hemolytic properties of Propionibacterium acnes and related bacteria.
        J Clin Microbiol. 1977; 6: 555-558
        • Dreno B.
        • Pecastaings S.
        • Corvec S.
        • Veraldi S.
        • Khammari A.
        • Roques C.
        Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates.
        J Eur Acad Dermatol Venereol. 2018; 32: 5-14
        • Kurosawa M.
        • Oda M.
        • Domon H.
        • Saitoh I.
        • Hayasaki H.
        • Terao Y.
        Streptococcus pyogenes camp factor attenuates phagocytic activity of raw 264.7 cells.
        Microb Infect. 2016; 18: 118-127
        • Mak T.N.
        • Schmid M.
        • Brzuszkiewicz E.
        • Zeng G.
        • Meyer R.
        • Sfanos K.S.
        • et al.
        Comparative genomics reveals distinct host-interacting traits of three major human-associated propionibacteria.
        BMC Genom. 2013; 14: 640
        • Hayashi N.
        • Akamatsu H.
        • Iwatsuki K.
        • Shimada-Omori R.
        • Kaminaka C.
        • Kurokawa I.
        • et al.
        Japanese dermatological association guidelines: guidelines for the treatment of acne vulgaris 2017.
        J Dermatol. 2018; 45: 898-935
        • Nakase K.
        • Yoshida A.
        • Saita H.
        • Hayashi N.
        • Nishijima S.
        • Nakaminami H.
        • et al.
        Relationship between quinolone use and resistance of Staphylococcus epidermidis in patients with acne vulgaris.
        J Dermatol. 2019; 46: 782-786
        • Nakase K.
        • Koizumi J.
        • Fukumoto S.
        • Hayashi N.
        • Noguchi N.
        • Nakaminami H.
        Increased prevalence of minocycline-resistant Staphylococcus epidermidis with tet(M) by tetracycline use for acne treatment.
        Microb Drug Resist. 2022; 28: 861-866
        • Aoki S.
        • Nakase K.
        • Hayashi N.
        • Noguchi N.
        Transconjugation of erm(X) conferring high-level resistance of clindamycin for Cutibacterium acnes.
        J Med Microbiol. 2019; 68: 26-30
        • Ponraj D.S.
        • Lange J.
        • Falstie-Jensen T.
        • Jorgensen N.P.
        • Ravn C.
        • Poehlein A.
        • et al.
        Amplicon-based next-generation sequencing as a diagnostic tool for the detection of phylotypes of Cutibacterium acnes in orthopedic implant-associated infections.
        Front Microbiol. 2022; 13866893
        • Prinz J.
        • Schmid B.
        • Zbinden R.
        • Zingg P.O.
        • Uckay I.
        • Achermann Y.
        • et al.
        Fast and sensitive multiplex real-time quantitative pcr to detect Cutibacterium periprosthetic joint infections.
        J Mol Diagn. 2022; 24: 666-673